Urban Science (Dec 2023)
To What Extent Have Nature-Based Solutions Mitigated Flood Loss at a Regional Scale in the Philadelphia Metropolitan Area?
Abstract
Globally, floods are becoming more severe, lasting longer, and occurring more frequently because of changes in climate, rapid urbanization, and changing human demographics. Although traditional structural flood mitigation infrastructures (e.g., drainage systems, levees) are effective in urban areas, their functionalities in the face of extreme rainfall events and increased development largely depend on the capacity and location of such systems, making complementary solutions such as nature-based solutions (NBS) important. The concept of NBS within the context of flood mitigation has gained traction in the last decade; however, the success of NBS depends on their effectiveness and distribution over urban regions. This article seeks to examine the potential of NBS as a flood loss mitigation tool in one of the fastest-growing and flood-prone counties of Pennsylvania, Montgomery County, using Generalized Linear Model (GLR) and Geographically Weighted Regression (GWR) techniques. The analysis integrates the National Risk Index dataset for river flooding, a 100-year flood zone layer from National Flood Hazard Layer (NFHL) provided by FEMA, with land use and impervious surface percent data derived from National Land Cover Database (NLCD) for 2019 and socioeconomic data at the U.S. census tract level from the 2019 U.S. Census. This study’s findings partially contradict previous research by revealing an unexpected relationship between NBS quantity in floodplains and expected annual loss. Findings also suggest that small size and disconnected patches of NBS in floodplains in some dense urban areas effectively reduce total losses from flood events.
Keywords