Engineering (Jun 2022)

Vacuum Switching Technology for Future of Power Systems

  • Xiaofei Yao,
  • Jianhua Wang,
  • Shaogui Ai,
  • Zhiyuan Liu,
  • Yingsan Geng,
  • Zhiguo Hao

Journal volume & issue
Vol. 13
pp. 164 – 177

Abstract

Read online

Even though switching in vacuum is a technology with almost 100 years of history, its recent developments are still changing the future of power transmission and distribution systems. First, current switching in vacuum is an eco-friendly technology compared to switching in SF6 gas, which is the strongest greenhouse gas according to the Kyoto Protocol. Vacuum, an eco-friendly natural medium, is promising for reducing the usage of SF6 gas in current switching in transmission voltage. Second, switching in vacuum achieves faster current interruption than existing alternating current (AC) switching technologies. A vacuum circuit breaker (VCB) that uses an electromagnetic repulsion actuator is able to achieve a theoretical limit of AC interruption, which can interrupt a short-circuit current in the first half-cycle of a fault current, compared to the more common three cycles for existing current switching technologies. This can thus greatly enhance the transient stability of power networks in the presence of short-circuit faults, especially for ultra- and extra-high-voltage power transmission lines. Third, based on fast vacuum switching technology, various brilliant applications emerge, which are benefiting the power systems. They include the applications in the fields of direct current (DC) circuit breakers (CBs), fault current limiting, power quality improvement, generator CBs, and so forth. Fast vacuum switching technology is promising for controlled switching technology in power systems because it has low variation in terms of opening and closing times. With this controlled switching, vacuum switching technology may change the “gene” of power systems, by which power switching transients will become smoother.

Keywords