Poultry Science (Oct 2022)
Heat stress in broilers of liver injury effects of heat stress on oxidative stress and autophagy in liver of broilers
Abstract
ABSTRACT: This study aimed to investigate the effect of chronic heat stress on oxidative stress in liver of broilers. In our study, chickens were randomly allocated to control 1 group (control 7 d), heat stress 1 group (HS1, 7 d), control 2 group (control 14 d) and heat stress 2 group (HS2, 14 d), with 30 replicates in each group. Broilers in heat stress groups exposed 8 h/day heat stress (35 ± 2°C) for 7 or 14 consecutive days, and the rest of time per day were kept at 23 ± 2℃ the same as control group broilers. Growth performance and the liver tissues were collected for histological observation and detection of organ index and liver redox status. The serum indicators (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) related to liver injury were determined. Moreover, Nrf2-related genes and protein expression levels in liver were measured. The results showed that in heat stress group broilers the body weight gain, feed conversion ratio, liver weight, and liver index were decreased, inflammatory cells infiltration in liver, and serum AST level was enhanced, compared with control group broilers. Moreover, the hepatic malondialdehyde (MDA) and superoxide dismutase (SOD) level were increased after 1 wk of heat stress. Nrf2, Sqstm1/p62, HO-1, and NQO1 mRNA expressions in the liver of broilers were decreased by heat stress. P62 and p-p62 protein expressions were significantly up-regulated, but Nrf2 and keap1 protein level was decreased in heat stress group broilers as compared to control group. The mRNA expression levels of Beclin1, LC3-I, LC3-II were down-regulated significantly with heat stress for 1 wk. The mRNA expression level of mTOR up-regulated after 2 wk of heat stress. In conclusion, heat stress induced liver injury of broilers by down-regulating Nrf2-keap1 signaling pathway and autophagy.