The minimization of exact total weighted completion time in the preemptive scheduling problem by subsequent length-equal job importance growth
Abstract
For the preemptive scheduling problem in case of subsequent job importance growth, it is studied whether the optimal schedule might be found faster within an exact model. It is ascertained that when the number of jobs up to six (except for the case of four jobs) and there is no randomness in problem forming, a little advantage of weight-descending job order exists only on average. As the number of jobs increases, the advantage of either weight-descending or weight-ascending job order becomes more certain. When priority weights are formed randomly, weight-descending job order is expected to be faster than weight-ascending.
Keywords