Quantum (Feb 2019)
Fault-tolerant gates via homological product codes
Abstract
A method for the implementation of a universal set of fault-tolerant logical gates is presented using homological product codes. In particular, it is shown that one can fault-tolerantly map between different encoded representations of a given logical state, enabling the application of different classes of transversal gates belonging to the underlying quantum codes. This allows for the circumvention of no-go results pertaining to universal sets of transversal gates and provides a general scheme for fault-tolerant computation while keeping the stabilizer generators of the code sparse.