Foods (Mar 2023)

Hybrid Sausages Using Pork and Cricket Flour: Texture and Oxidative Storage Stability

  • Xiaocui Han,
  • Binbin Li,
  • Eero Puolanne,
  • Marina Heinonen

DOI
https://doi.org/10.3390/foods12061262
Journal volume & issue
Vol. 12, no. 6
p. 1262

Abstract

Read online

This study aimed to study the functionalities of cricket flour (CF) and the effects of the addition of CF on the texture and oxidative stability of hybrid sausages made from lean pork and CF. Functional properties of CF, including protein solubility, water-holding capacity, and gelling capacity, were examined at different pHs, NaCl concentrations, and CF contents in laboratory tests. The protein solubility of CF was significantly affected by pH, being at its lowest at pH 5 (within the range 2–10), and the highest protein solubility toward NaCl concentrations was found at 1.0 M (at pH 6.8). A gel was formed when the CF content was ≥10%. A control sausage was made from lean pork, pork fat, salt, phosphate, and ice water. Three different hybrid sausages were formulated by adding CF at 1%, 2.5%, and 5.0% levels on top of the base (control) recipe. In comparison to control sausage, the textural properties of the CF sausages in terms of hardness, springiness, cohesiveness, chewiness, resilience, and fracturability decreased significantly, which corresponded to the rheological results of the raw sausage batter when heated at a higher temperature range (~45–80 °C). The addition of CF to the base recipe accelerated both lipid and protein oxidation during 14 days of storage, as indicated by the changes in TBARS and carbonyls and the loss of free thiols and tryptophan fluorescence intensity. These results suggest that the addition of CF, even at low levels (≤5%), had negative effects on the texture and oxidative stability of the hybrid sausages.

Keywords