Design Science (Jan 2024)

Empirical evidence and computational assessment on design knowledge transferability

  • Molla H. Rahman,
  • Alparslan E. Bayrak,
  • Zhenghui Sha

DOI
https://doi.org/10.1017/dsj.2024.7
Journal volume & issue
Vol. 10

Abstract

Read online

Developing an artificial design agent that mimics human design behaviors through the integration of heuristics is pivotal for various purposes, including advancing design automation, fostering human-AI collaboration, and enhancing design education. However, this endeavor necessitates abundant behavioral data from human designers, posing a challenge due to data scarcity for many design problems. One potential solution lies in transferring learned design knowledge from one problem domain to another. This article aims to gather empirical evidence and computationally evaluate the transferability of design knowledge represented at a high level of abstraction across different design problems. Initially, a design agent grounded in reinforcement learning (RL) is developed to emulate human design behaviors. A data-driven reward mechanism, informed by the Markov chain model, is introduced to reinforce prominent sequential design patterns. Subsequently, the design agent transfers the acquired knowledge from a source task to a target task using a problem-agnostic high-level representation. Through a case study involving two solar system designs, one dataset trains the design agent to mimic human behaviors, while another evaluates the transferability of these learned behaviors to a distinct problem. Results demonstrate that the RL-based agent outperforms a baseline model utilizing the first-order Markov chain model in both the source task without knowledge transfer and the target task with knowledge transfer. However, the model’s performance is comparatively lower in predicting the decisions of low-performing designers, suggesting caution in its application, as it may yield unsatisfactory results when mimicking such behaviors.

Keywords