Foods (Oct 2024)

Integrative Metabolomic and Transcriptomic Analysis Provides Novel Insights into the Effects of SO<sub>2</sub> on the Postharvest Quality of ‘Munage’ Table Grapes

  • Zhenliang Mou,
  • Yuyao Yuan,
  • Wei Wei,
  • Yating Zhao,
  • Bin Wu,
  • Jianye Chen

DOI
https://doi.org/10.3390/foods13213494
Journal volume & issue
Vol. 13, no. 21
p. 3494

Abstract

Read online

Postharvest grapes exhibit a limited shelf life due to susceptibility to rot and deterioration, significantly reducing their nutritional and economic value. Sulfur dioxide (SO2) is a widely recognized preservative for extending grape storage life. This study performed a detailed analysis of ‘Munage’ table grapes treated with SO2 fumigation, employing transcriptomic and metabolomic approaches. Results indicate that SO2 fumigation significantly extends the shelf life of grapes, as demonstrated by improved visual quality, reduced decay rates, and increased fruit firmness. We identified 309 differentially accumulated metabolites (DAMs) and 1906 differentially expressed genes (DEGs), including 135 transcription factors (TFs). Both DEGs and DAMs showed significant enrichment of flavonoid-related metabolism compared with the control, and the relative content of four flavonoid metabolites (Wogonin-7-O-glucuronide, Acacetin-7-O-glucuronide, Apigenin-7-O-glucuronide, and Baicalein 7-O-glucuronide) were significantly increased in grapes upon SO2 treatment, suggesting that SO2 treatment had a substantial regulatory effect on grape flavonoid metabolism. Importantly, we constructed complex regulatory networks by screening key enzyme genes (e.g., PAL, 4CLs, CHS, CHI2, and UGT88F3) related to the metabolism of target flavonoid, as well as potential regulatory transcription factors (TFs). Overall, our findings offer new insights into the regulatory mechanisms by which SO2 maintains the postharvest quality of table grapes.

Keywords