Ecological Indicators (Jan 2024)

Effects of urban green spaces landscape pattern on carbon sink among urban ecological function areas at the appropriate scale: A case study in Xi’an

  • Nuo Shi,
  • Yang Yu,
  • Shuting Liang,
  • Yichen Ren,
  • Mengqi Liu

Journal volume & issue
Vol. 158
p. 111427

Abstract

Read online

At appropriate scales, optimizing landscape pattern in urban green spaces is shown to augment carbon sink. However, existing research primarily concentrates on regional or city-wide areas, often overlooking the nuanced effects of landscape pattern on carbon sink within specialized urban ecological function areas. Focusing on the city of Xi'an and emphasizing the forest within green spaces as the principal subject, this study investigated the spatial interplay between forest landscape pattern and carbon sink across the Ecological Control Area, the Urban Ecological Construction Buffer Area, and the Tsinling Mountains Ecological Protection Area. Grounded in field surveys, this study employed GF1-WFV remote sensing imagery to ascertain the 2021 land-use data in Xi'an and further classified forests into five distinct types: deciduous broad-leaved forest, evergreen coniferous forest, evergreen broad-leaved forest, coniferous and broad-leaved mixed forest, and evergreen-deciduous broad-leaved mixed forest. Employing the Carnegie-Ames-Stanford Approach model and landscape metrics methods, the study evaluated the carbon sink and landscape pattern at multi-scale. Through semi-variance analyses, we discerned the appropriate grid scales. Finally, multiple linear stepwise regression model elucidated the significant landscape metrics, while geographically weighted regression model were employed to scrutinize spatial relationships. Our findings suggested that grid scales of 5 km for the Ecological Control Area, 3 km for the Urban Ecological Construction Buffer Area, and 6 km for the Tsinling Mountains Ecological Protection Area are most appropriate for effective management and planning. Metrics related to area, edge, and fragmentation were pivotal in enhancing carbon sink, and their influence was spatially variable. This study furnished an in-depth analysis of how landscape pattern and carbon sink interact spatially within various urban ecological function areas at appropriate grid scales, thereby providing a scientific framework for the sustainable planning and management of green spaces.

Keywords