BMC Complementary Medicine and Therapies (Jun 2022)

Phytochemistry, anti-diabetic and antioxidant potentials of Allium consanguineum Kunth

  • Mater H. Mahnashi,
  • Yahya S. Alqahtani,
  • Ali O. Alqarni,
  • Bandar A. Alyami,
  • Omaish S. Alqahtani,
  • Muhammad Saeed Jan,
  • Fida Hussain,
  • Zia Ul Islam,
  • Farhat Ullah,
  • Muhammad Ayaz,
  • Muhammad Abbas,
  • Umer Rashid,
  • Abdul Sadiq

DOI
https://doi.org/10.1186/s12906-022-03639-5
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Aim The study was planned to investigate the phytochemicals, antidiabetic and antioxidant studies of A. consanguineum. Methods The preliminary studies were performed on crude extract and different solvent fractions. Based on the potency, the chloroform fraction was semi-purified to phyto-fractions CHF-1 – 5. Furthermore, CHF-3 was subjected to isolation of pure compounds using column chromatography. The α-glucosidase, α-amylase and antioxidant assays (DPPH, ABTS, H2O2) were performed on all samples. The in-vivo experiments on compounds 1 and 2 were also performed using oral glucose tolerance test. Docking studies were performed on α-glucosidase and α-amylase targets. Results Among all fractions, the chloroform fraction exhibited excellent activities profile giving IC50 values of 824, 55, 117, 58 and 85 μg/ml against α-glucosidase, α-amylase, DPPH, ABTS and H2O2 targets respectively. Among the five semi-purified chloroform phyto-fractions (CHF-1-5), CHF-3 was the leading fraction in activities giving IC50 values of 85.54, 61.19 and 26.58 μg/ml against α-glucosidase, α-amylase and DPPH respectively. Based on the overall potency and physical amount of CHF-3, it was subjected to purification to get compounds 1 and 2. The two compounds were also found potent in in-vitro activities. The observed IC50 values for compound 1 were 7.93, 28.01 and 6.19 μg/ml against α-glucosidase, α-amylase and DPPH respectively. Similarly, the compound 2 exhibited IC50 of 14.63, 24.82 and 7.654 μg/ml against α-glucosidase, α-amylase and DPPH respectively. Compounds 1 and 2 were potent in decreasing the blood glucose levels in experimental animals. Compounds 1 and 2 also showed interactions with the respective enzymes with molecular docking. Conclusions We can conclude that A. Consanguineum is a rich source of natural antidiabetic agents. Bioguided isolation of compound 1 and 2 showed potential inhibitions in all tested in-vitro antidiabetic targets. Further, both the compounds were also able to decrease the blood glucose levels in experimental animals.

Keywords