Entropy (Apr 2025)

Baselining Urban Ecosystems from Sentinel Species: Fitness, Flows, and Sinks

  • Matteo Convertino,
  • Yuhan Wu,
  • Hui Dong

DOI
https://doi.org/10.3390/e27050486
Journal volume & issue
Vol. 27, no. 5
p. 486

Abstract

Read online

How can the shape of biodiversity inform us about cities’ ecoclimatic fitness and guide their development? Can we use species as the harbingers of climatic extremes? Eco-climatically sensitive species carry information about hydroclimatic change in their distribution, fitness, and preferential gradients of habitat suitability. Conversely, environmental features outside of the species’ fitness convey information on potential ecological anomalies in response to extremes to adapt or mitigate, such as through urban parks. Here, to quantify ecosystems’ fitness, we propose a novel computational model to extract multivariate functional ecological networks and their basins, which carry the distributed signature of the compounding hydroclimatic pressures on sentinel species. Specifically, we consider butterflies and their habitat suitability (HS) to infer maximum suitability gradients that are meaningful of potential species networks and flows, with the smallest hydroclimatic resistance across urban landscapes. These flows are compared to the distribution of urban parks to identify parks’ ecological attractiveness, actual and potential connectivity, and park potential to reduce hydroclimatic impacts. The ecosystem fitness index (EFI) is novelly introduced by combining HS and the divergence of the relative species abundance (RSA) from the optimal log-normal Preston plot. In Shenzhen, as a case study, eco-flow networks are found to be spatially very extended, scale-free, and clustering for low HS gradient and EFI areas, where large water bodies act as sources of ecological corridors draining into urban parks. Conversely, parks with higher HS, HS gradients, and EFIs have small-world connectivity non-overlapping with hydrological networks. Diverging patterns of abundance and richness are inferred as increasing and decreasing with HS. HS is largely determined by temperature and precipitation of the coldest quarter and seasonality, which are critical hydrologic variables. Interestingly, a U-shape pattern is found between abundance and diversity, similar to the one in natural ecosystems. Additionally, both abundance and richness are mildly associated with park area according to a power function, unrelated to longitude but linked to the degree of urbanization or park centrality, counterintuitively. The Preston plot’s richness–abundance and abundance-rank patterns were verified to reflect the stationarity or ecological meta-equilibrium with the environment, where both are a reflection of community connectivity. Ecological fitness is grounded on the ecohydrological structure and flows where maximum HS gradients are indicative of the largest eco-changes like climate-driven species flows. These flows, as distributed stress-response functions, inform about the collective eco-fitness of communities, like parks in cities. Flow-based networks can serve as blueprints for designing ecotones that regulate key ecosystem functions, such as temperature and evapotranspiration, while generating cascading ecological benefits across scales. The proposed model, novelly infers HS eco-networks and calculates the EFI, is adaptable to diverse sensitive species and environmental layers, offering a robust tool for precise ecosystem assessment and design.

Keywords