PLoS ONE (Jan 2018)
Exercise gas exchange in continuous-flow left ventricular assist device recipients.
Abstract
Exercise ventilation/perfusion matching in continuous-flow left ventricular assist device recipients (LVAD) has not been studied systematically. Twenty-five LVAD and two groups of 15 reduced ejection fraction chronic heart failure (HFrEF) patients with peak VO2 matched to that of LVAD (HFrEF-matched) and ≥14 ml/kg/min (HFrEF≥14), respectively, underwent cardiopulmonary exercise testing with arterial blood gas analysis, echocardiogram and venous blood sampling for renal function evaluation. Arterial-end-tidal PCO2 difference (P(a-ET)CO2) and physiological dead space-tidal volume ratio (VD/VT) were used as descriptors of alveolar and total wasted ventilation, respectively. Tricuspid annular plane systolic excursion/pulmonary artery systolic pressure ratio (TAPSE/PASP) and blood urea nitrogen/creatinine ratio were calculated in all patients and used as surrogates of right ventriculo-arterial coupling and circulating effective volume, respectively. LVAD and HFrEF-matched showed no rest-to-peak change of P(a-ET)CO2 (4.5±2.4 vs. 4.3±2.2 mm Hg and 4.1±1.4 vs. 3.8±2.5 mm Hg, respectively, both p >0.40), whereas a decrease was observed in HFrEF≥14 (6.5±3.6 vs. 2.8±2.0 mm Hg, p <0.0001). Rest-to-peak changes of P(a-ET)CO2 correlated to those of VD/VT (r = 0.70, p <0.0001). Multiple regression indicated TAPSE/PASP and blood urea nitrogen/creatinine ratio as independent predictors of peak P(a-ET)CO2. LVAD exercise gas exchange is characterized by alveolar wasted ventilation, i.e. hypoperfusion of ventilated alveoli, similar to that of advanced HFrEF patients and related to surrogates of right ventriculo-arterial coupling and circulating effective volume.