BMC Plant Biology (Aug 2022)
Plastome structure of 8 Calanthe s.l. species (Orchidaceae): comparative genomics, phylogenetic analysis
Abstract
Abstract Background Calanthe (Epidendroideae, Orchidaceae) is a pantropical genus distributed in Asia and Africa. Its species are of great importance in terms of economic, ornamental and medicinal values. However, due to limited and confusing delimitation characters, the taxonomy of the Calanthe alliance (Calanthe, Cephalantheropsis, and Phaius) has not been sufficiently resolved. Additionally, the limited genomic information has shown incongruences in its systematics and phylogeny. In this study, we used illumina platform sequencing, performed a de novo assembly, and did a comparative analysis of 8 Calanthe group species' plastomes: 6 Calanthe and 2 Phaius species. Phylogenetic analyses were used to reconstruct the relationships of the species as well as with other species of the family Orchidaceae. Results The complete plastomes of the Calanthe group species have a quadripartite structure with varied sizes ranging between 150,105bp-158,714bp, including a large single-copy region (LSC; 83,364bp- 87,450bp), a small single-copy region (SSC; 16,297bp -18,586bp), and a pair of inverted repeat regions (IRs; 25,222bp - 26,430bp). The overall GC content of these plastomes ranged between 36.6-36.9%. These plastomes encoded 131-134 differential genes, which included 85-88 protein-coding genes, 37-38 tRNA genes, and 8 rRNA genes. Comparative analysis showed no significant variations in terms of their sequences, gene content, gene order, sequence repeats and the GC content hence highly conserved. However, some genes were lost in C. delavayi (P. delavayi), including ndhC, ndhF, and ndhK genes. Compared to the coding regions, the non-coding regions had more sequence repeats hence important for species DNA barcoding. Phylogenetic analysis revealed a paraphyletic relationship in the Calanthe group, and confirmed the position of Phaius delavayi in the genus Calanthe as opposed to its previous placement in Phaius. Conclusion This study provides a report on the complete plastomes of 6 Calanthe and 2 Phaius species and elucidates the structural characteristics of the plastomes. It also highlights the power of plastome data to resolve phylogenetic relationships and clarifies taxonomic disputes among closely related species to improve our understanding of their systematics and evolution. Furthermore, it also provides valuable genetic resources and a basis for studying evolutionary relationships and population genetics among orchid species.
Keywords