Cancer Treatment and Research Communications (Jan 2021)

Tumor-derived exosomal circFARSA mediates M2 macrophage polarization via the PTEN/PI3K/AKT pathway to promote non-small cell lung cancer metastasis

  • Tengfei Chen,
  • Yali Liu,
  • Chang Li,
  • Chun Xu,
  • Cheng Ding,
  • Jun Chen,
  • Jun Zhao

Journal volume & issue
Vol. 28
p. 100412

Abstract

Read online

Background: Exosomes in the tumor microenvironment (TME) facilitate tumor progression by enabling inter-cellular communication. Tumor cell-derived exosomes can polarize tumor-associated macrophages (TAMs) to an immunosuppressive M2 phenotype. The aim of this study was to determine the role of exosomal circFARSA in non-small cell lung cancer (NSCLC) and elucidate the underlying mechanisms. Methods: In situ circFARSA expression in NSCLC tissues was analyzed using qRT-PCR. The in vitro migration of NSCLC cells was evaluated using a transwell assay or through indirect co-culture with M2 macrophages, as appropriate. Immunoprecipitation (IP), western blotting, RNA binding protein immunoprecipitation (RIP), and RNA pull down assays were conducted for mechanistic studies. Results: CircFARSA was significantly upregulated in NSCLC tissues, and the ectopic overexpression of circFARSA enhanced NSCLC cell metastasis. Furthermore, NSCLC cell-derived exosomal circFARSA polarized the macrophages to a M2 phenotype. The NSCLC cells co-cultured with macrophages transfected with circFARSA or pre-treated with exosomal circFARSA showed enhanced EMT and metastasis. Mechanistically, exosomal circFARSA induced M2 polarization via PTEN ubiquitination and degradation, which further activated the PI3K/AKT signaling pathway. In addition, eIF4A3 promoted circRNA biogenesis and cyclization by binding to its flanking sequences. Conclusion: Exosomal circFARSA plays a crucial role in cross-talk between macrophages and NSCLC cells through the PTEN/PI3K/AKT signaling pathway, and is a promising diagnostic/prognostic biomarker for NSCLC.

Keywords