Pipeline wax deposition modeling: A sensitivity study on two commercial software
Giancarlo Giacchetta,
Barbara Marchetti,
Mariella Leporini,
Alessandro Terenzi,
Davide Dall’Acqua,
Laura Capece,
Roberta Cocci Grifoni
Affiliations
Giancarlo Giacchetta
Dipartimento di Ingegneria Industriale e Scienze Matematiche (DIISM), Università Politecnica della Marche, via Brecce Bianche, Ancona, Italy
Barbara Marchetti
Facoltà di Ingegneria, Università degli Studi E-Campus, via Isimbardi 10, 22060 Novedrate, CO. Italy
Mariella Leporini
Dipartimento di Ingegneria Industriale e Scienze Matematiche (DIISM), Università Politecnica della Marche, via Brecce Bianche, Ancona, Italy; Corresponding author.
Alessandro Terenzi
Saipem S.p.A., via Toniolo 1, 61032, Fano, PU, Italy
Davide Dall’Acqua
Dipartimento di Ingegneria Industriale e Scienze Matematiche (DIISM), Università Politecnica della Marche, via Brecce Bianche, Ancona, Italy
Laura Capece
Dipartimento di Ingegneria Industriale e Scienze Matematiche (DIISM), Università Politecnica della Marche, via Brecce Bianche, Ancona, Italy
Roberta Cocci Grifoni
School of Architecture and Design, Università di Camerino, Camerino, MC, Italy
This paper presents the results of a sensitivity study carried out to investigate the performances of two commercial codes, OLGA and LedaFlow, used to model the wax deposition process in pipelines under multiphase flow. Reliable simulations of the phenomenon are essential to properly design pipelines and to adopt cost-effective strategies for prevention and removal of wax deposits, reducing the risks of blockage. The main limit of the available models is that their predictions depend on a number of parameters which are usually adjusted to fit the experimental data obtained from laboratory deposition tests. Since a reliable upscale criterion has not been developed yet, model predictions have been more suitably validated using real field data, reported in literature. The performances of the commercial codes in modelling wax precipitation and deposition have been compared to each other.