PLoS ONE (Jan 2020)

Characterization of the visceral and neuronal phenotype of 4L/PS-NA mice modeling Gaucher disease.

  • Victoria Schiffer,
  • Estibaliz Santiago-Mujika,
  • Stefanie Flunkert,
  • Staffan Schmidt,
  • Martina Farcher,
  • Tina Loeffler,
  • Irene Schilcher,
  • Maria Posch,
  • Joerg Neddens,
  • Ying Sun,
  • Jan Kehr,
  • Birgit Hutter-Paier

DOI
https://doi.org/10.1371/journal.pone.0227077
Journal volume & issue
Vol. 15, no. 1
p. e0227077

Abstract

Read online

Gaucher disease is caused by a deficiency in glucocerebrosidase that can result in non-neuronal as well as neuronal symptoms. Common visceral symptoms are an increased organ size, specifically of the spleen, and glucosylceramide as well as glucosylsphingosine substrate accumulations as a direct result of the glucocerebrosidase deficiency. Neuronal symptoms include motor deficits and strong alterations in the cerebellum. To evaluate the effect of new compounds for the treatment of this devastating disease, animal models are needed that closely mimic the human phenotype. The 4L/PS-NA mouse as model of Gaucher disease is shown to present reduced glucocerebrosidase activity similar to human cases but an in-depth characterization of the model was still not performed. We therefore analyzed 4L/PS-NA mice for visceral alterations, motor deficits and also neuronal changes like glucocerebrosidase activity, substrate levels and neuroinflammation. A special focus was set at pathological changes of the cerebellum. Our results show that 4L/PS-NA mice have strongly enlarged visceral organs that are infiltrated by enlarged leukocytes and macrophages. Furthermore, animals present strong motor deficits that are accompanied by increased glucosylceramide and glucosylsphingosine levels in the brain, astrocytosis and activated microglia in the cortex and hippocampus as well as reduced calbindin levels in the cerebellum. The latter was directly related to a strong Purkinje cell loss. Our results thus provide a detailed characterization of the 4L/PS-NA mouse model over age showing the translational value of the model and validating its usefulness for preclinical efficiency studies to evaluate new compounds against Gaucher disease.