PLoS ONE (Jan 2016)

The Association between Elevated Levels of Peripheral Serotonin and Its Metabolite - 5-Hydroxyindoleacetic Acid and Bone Strength and Metabolism in Growing Rats with Mild Experimental Chronic Kidney Disease.

  • Dariusz Pawlak,
  • Ewa Oksztulska-Kolanek,
  • Beata Znorko,
  • Tomasz Domaniewski,
  • Joanna Rogalska,
  • Alicja Roszczenko,
  • Małgorzata Michalina Brzóska,
  • Anna Pryczynicz,
  • Andrzej Kemona,
  • Krystyna Pawlak

DOI
https://doi.org/10.1371/journal.pone.0163526
Journal volume & issue
Vol. 11, no. 10
p. e0163526

Abstract

Read online

Chronic kidney disease (CKD) is associated with disturbances in bone strength and metabolism. The alterations of the serotonergic system are also observed in CKD. We used the 5/6 nephrectomy model of CKD to assess the impact of peripheral serotonin and its metabolite- 5-hydroxyindoleacetic acid on bone biomechanical properties and metabolism in growing rats. The animals were sacrificed one and three months after nephrectomy. Biomechanical properties were determined on two different bone types: the cortical bone of the femoral diaphysis using three-point bending test and the mixed cortico-trabecular bone by the bending test of the femoral neck. Biomechanical tests revealed preserved cortical bone strength, whereas work to fracture (W) and yield load (Fy) of mixed cortico-trabecular bone were significantly lower in CKD compared to controls. Serum activity of alkaline phosphatase (ALP), a bone formation marker, and tartrate-resistant acid phosphatase (TRACP 5b) reflecting bone resorption, were similar in CKD and controls. ALP was associated with lower femoral stiffness and strength, and higher displacements and W. TRACP 5b was inversely associated with cortical Fu and W. The elevated peripheral serotonergic system in CKD was: inversely associated with stiffness but positively related to the displacements and W; inversely associated with cortical Fy but positively correlated with this parameter in cortico-trabecular bone; inversely associated with ALP in controls but positively correlated with this biomarker in CKD animals. In conclusion, this study demonstrates the distinct effect of mild degree of CKD on bone strength in rapidly growing rats. The impaired renal function affects the peripheral serotonin metabolism, which in turn may influence the strength and metabolism of bones in these rats. This relationship seems to be beneficial on the biomechanical properties of the cortico-trabecular bone, whereas the cortical bone strength can be potentially reduced.