BMC Genomics (Nov 2009)

Evolution of genomic sequence inhomogeneity at mid-range scales

  • Amarachintha Surya P,
  • Chen Miao,
  • He Jie,
  • Hart Benjamin,
  • Shepard Samuel S,
  • Prakash Ashwin,
  • Mileyeva-Biebesheimer Olga,
  • Bechtel Jason,
  • Fedorov Alexei

DOI
https://doi.org/10.1186/1471-2164-10-513
Journal volume & issue
Vol. 10, no. 1
p. 513

Abstract

Read online

Abstract Background Mid-range inhomogeneity or MRI is the significant enrichment of particular nucleotides in genomic sequences extending from 30 up to several thousands of nucleotides. The best-known manifestation of MRI is CpG islands representing CG-rich regions. Recently it was demonstrated that MRI could be observed not only for G+C content but also for all other nucleotide pairings (e.g. A+G and G+T) as well as for individual bases. Various types of MRI regions are 4-20 times enriched in mammalian genomes compared to their occurrences in random models. Results This paper explores how different types of mutations change MRI regions. Human, chimpanzee and Macaca mulatta genomes were aligned to study the projected effects of substitutions and indels on human sequence evolution within both MRI regions and control regions of average nucleotide composition. Over 18.8 million fixed point substitutions, 3.9 million SNPs, and indels spanning 6.9 Mb were procured and evaluated in human. They include 1.8 Mb substitutions and 1.9 Mb indels within MRI regions. Ancestral and mutant (derived) alleles for substitutions have been determined. Substitutions were grouped according to their fixation within human populations: fixed substitutions (from the human-chimp-macaca alignment), major SNPs (> 80% mutant allele frequency within humans), medium SNPs (20% - 80% mutant allele frequency), minor SNPs (3% - 20%), and rare SNPs ( Conclusion MRI regions have comparable levels of de novo mutations to the control genomic sequences with average base composition. De novo substitutions rapidly erode MRI regions, bringing their nucleotide composition toward genome-average levels. However, those substitutions that favor the maintenance of MRI properties have a higher chance to spread through the entire population. Indels have a clear tendency to maintain MRI features yet they have a smaller impact than substitutions. All in all, the observed fixation bias for mutations helps to preserve MRI regions during evolution.