Advanced Engineering Research (Jul 2020)

Effect of mass of parts on removal rate under vibroabrasive machining

  • V. I. Butenko,
  • A. V. Stel'makh

DOI
https://doi.org/10.23947/1992-5980-2020-20-2-162-169
Journal volume & issue
Vol. 20, no. 2
pp. 162 – 169

Abstract

Read online

Introduction. It should be noted that the study on the problem of the effect of the mass of parts on the vibration-abrasive processing is insufficient. In the works of A.P. Babichev and M.A. Tamarkin, the fact of such an effect is mentioned, but the degree and mechanism of the effect are not disclosed. In the metal removal formulas, only the number of interactions leading to microcutting is taken into account. The present work objective is to determine the effect of the mass of parts on the metal removal rate under vibroabrasive machining.Materials and Methods. An empirical, i.e., experimental, approach is used. Parts from D16 and 30KhGSA materials which are widely used in the aviation industry were selected as samples. To change the mass, holes were drilled in the blanks; lead was poured into some samples, and plugs made of the same material as the blanks themselves were clogged into the others. Thus, experiments were carried out with solid, hollow, and weighted with lead samples. The working abrasive medium was scrap of grinding wheels of 40 x 80 mm, 25 grain size, and of trihedron prisms of 15 x 15 mm, 16 grain size. The experiments made it possible to clearly demonstrate the effect of grain size on the removal rate of the workpiece.Results. The parameters of the effect of the mass of parts on the removal rate under vibroabrasive processing are determined. The results obtained show the removal per unit area. The data are approximated by the least squares method with a linear function. A version of its distribution is selected using the Fisher statistical criterion.Discussion and Conclusion. It is shown how the workpiece mass determines the specific removal rate under the vibroabrasive machining. In the future, the database which is used to determine the effect of the work material characteristics on the process under consideration should be replenished. This will allow introducing a correction factor for the influence of mass in the metal removal formula, which will provide more accurate prediction of metal removal at the design stage of technological processes of vibration-abrasive machining.

Keywords