BMC Bioinformatics (Mar 2024)

A non-negative spike-and-slab lasso generalized linear stacking prediction modeling method for high-dimensional omics data

  • Junjie Shen,
  • Shuo Wang,
  • Yongfei Dong,
  • Hao Sun,
  • Xichao Wang,
  • Zaixiang Tang

DOI
https://doi.org/10.1186/s12859-024-05741-6
Journal volume & issue
Vol. 25, no. 1
pp. 1 – 20

Abstract

Read online

Abstract Background High-dimensional omics data are increasingly utilized in clinical and public health research for disease risk prediction. Many previous sparse methods have been proposed that using prior knowledge, e.g., biological group structure information, to guide the model-building process. However, these methods are still based on a single model, offen leading to overconfident inferences and inferior generalization. Results We proposed a novel stacking strategy based on a non-negative spike-and-slab Lasso (nsslasso) generalized linear model (GLM) for disease risk prediction in the context of high-dimensional omics data. Briefly, we used prior biological knowledge to segment omics data into a set of sub-data. Each sub-model was trained separately using the features from the group via a proper base learner. Then, the predictions of sub-models were ensembled by a super learner using nsslasso GLM. The proposed method was compared to several competitors, such as the Lasso, grlasso, and gsslasso, using simulated data and two open-access breast cancer data. As a result, the proposed method showed robustly superior prediction performance to the optimal single-model method in high-noise simulated data and real-world data. Furthermore, compared to the traditional stacking method, the proposed nsslasso stacking method can efficiently handle redundant sub-models and identify important sub-models. Conclusions The proposed nsslasso method demonstrated favorable predictive accuracy, stability, and biological interpretability. Additionally, the proposed method can also be used to detect new biomarkers and key group structures.

Keywords