Nanomaterials (Feb 2024)

Origin of Multiferroism in VOX<sub>2</sub> (X = Cl, Br, I) Monolayers

  • Angel Todorov Apostolov,
  • Iliana Naumova Apostolova,
  • Julia Mihailova Wesselinowa

DOI
https://doi.org/10.3390/nano14050408
Journal volume & issue
Vol. 14, no. 5
p. 408

Abstract

Read online

Based on the proposed microscopic model, we investigate the multiferroic characteristics of VOX2 (X = Cl, Br, I) monolayers using a Green’s function method. The dependence of the microscopic parameters of the ferroelectric system (pseudo-spin arrangement and flipping rate) on the magnitude and sign of the exchange magnetic interaction along the b-axis and the value of the Dzyaloshinskii–Moria vector have been investigated and qualitatively explained. The possibility of observing a spin-reorientation transition with a change in the character of spin ordering from antiferromagnetic to ferromagnetic is investigated. It is found that the antisymmetric magnetoelectric interaction may be responsible for the spin-reorientation transition without a change in the ordering of magnetic moments. Changing the sign of the exchange magnetic interaction along the b-axis leads to ferromagnetic ordering without observing a spin-reorientation transition. The dependence of isotropic and antisymmetric magnetic interactions on the microscopic parameters of the ferroelectric system is qualitatively explained. A mechanism for the occurrence of the spin-reorientation transition is presented based on the proposed microscopic model. The obtained results qualitatively coincide with Density Functional Theory calculations.

Keywords