Molecular Therapy: Nucleic Acids (Jun 2021)
Stoichiometry of multi-specific immune checkpoint RNA Abs for T cell activation and tumor inhibition using ultra-stable RNA nanoparticles
Abstract
Immunotherapy has become a revolutionary subject in cancer therapy during the past few years. Immune checkpoint-targeting antibodies (Abs) could boost anticancer immune responses. However, certain protein-based immunotherapies revealed side effects and unfavorable biodistribution, so effective non-protein options with lower side effects are highly sought after. RNA’s ability to form various three-dimensional configurations allows for the creation of a variety of ligands to bind different cell receptors. The rubber-like properties of RNA nanoparticles (NPs) allow for swift lodging to cancer vasculature with little accumulation in vital organs, resulting in a favorable pharmacokinetic/pharmacodynamic (PK/PD) profile and safe pharmacological parameters. Multi-specific drugs are expected to be the fourth wave of biopharmaceutical innovation. Herein, we report the development of multi-specific Ab-like RNA NPs carrying multiple ligands for immunotherapy. The stoichiometries and stereo conformations of the checkpoint-activating RNA NPs were optimized for T cell activation. When compared to mono- and bi-specific RNA NPs, the tri-specific Ab-like RNA NPs bound to the trimeric T cell receptor with the highest efficiency, showed the optimal T cell activation, and promoted the strongest anti-tumor function of immune cells. Animal trials demonstrated that the tri-specific RNA NPs inhibited cancer growth. This Ab-like RNA NP platform represents an alternative to protein Abs for tumor immunotherapy.