Land (Jun 2024)

MaxEnt-Based Potential Distribution Mapping and Range Shift under Future Climatic Scenarios for an Alpine Bamboo <i>Thamnocalamus spathiflorus</i> in Northwestern Himalayas

  • Rajendra K. Meena,
  • Maneesh S. Bhandari,
  • Pawan Kumar Thakur,
  • Nitika Negi,
  • Shailesh Pandey,
  • Rama Kant,
  • Rajesh Sharma,
  • Netrananda Sahu,
  • Ram Avtar

DOI
https://doi.org/10.3390/land13070931
Journal volume & issue
Vol. 13, no. 7
p. 931

Abstract

Read online

Thamnocalamus spathiflorus is a shrubby woody bamboo invigorating at the alpine and sub-alpine region of the northwestern Himalayas. The present investigation was conducted to map the potential distribution of Th. spathiflorus in the western Himalayas for current and future climate scenario using Ecological Niche Modelling (ENM). In total, 125 geo-coordinates were collected for the species presence from Himachal Pradesh (HP) and Uttarakhand (UK) states of India and modelled to predict the current distribution using the Maximum Entropy (MaxEnt) model, along with 13 bioclimatic variables selected after multi-collinearity test. Model output was supported with a significant value of the Area Under the “Receiver Operating Characteristics” Curve (AUC = 0.975 ± 0.019), and other confusion matrix-derived accuracy measures. The variables, namely precipitation seasonality (Bio 15), precipitation (Prec), annual temperature range (Bio 7), and altitude (Alt) showed highest level of percentage contribution (72.2%) and permutation importance (60.9%) in predicting the habitat suitability of Th. spathiflorus. The actual (1 km2 buffer zone) and predicted estimates of species cover were ~136 km2 and ~982 km2, respectively. The predicted range was extended from Chamba (HP) in the north to Pithoragarh (UK) in southeast, which further protracted to Nepal. Furthermore, the distribution modelling under future climate change scenarios (RCP 8.5) for year 2050 and 2070 showed an eastern centroidal shift with slight decline of the species area by ~16 km2 and ~46 km2, respectively. This investigation employed the Model for Interdisciplinary Research on Climate (MIROC6)–shared socio-economics pathways (SSP245) for cross-validation purposes. The model was used to determine the habitat suitability and potential distribution of Th. spathiflorus in relation to the current distribution and RCP 8.5 future scenarios for the years 2021–2040 and 2061–2080, respectively. It showed a significant decline in the distribution area of the species between year 2030 and 2070. Overall, this is the pioneer study revealing the eco-distribution prediction modelling of this important high-altitude bamboo species.

Keywords