Pharmaceuticals (Sep 2024)

Optimization and Appraisal of Nintedanib-Loaded Mixed Polymeric Micelles as a Potential Nanovector for Non-Invasive Pulmonary Fibrosis Mitigation

  • Heba M. Aboud,
  • Shahira F. El Menshawe,
  • Nada H. Mohammed,
  • Alaa S. Tulbah,
  • Adel A. Ali

DOI
https://doi.org/10.3390/ph17101275
Journal volume & issue
Vol. 17, no. 10
p. 1275

Abstract

Read online

Background/Objectives: Nintedanib (NTD), a triple tyrosine kinase receptor inhibitor, is the recommended first-line tackling option for idiopathic pulmonary fibrosis (IPF). Nevertheless, the adequacy of NTD is curtailed by issues associated with its low solubility, first-pass effect, poor bioavailability, and liver toxicity. The objective of our work was to develop a non-invasive intratracheal (i.t.) nanoparadigm based on NTD-loaded polymeric mixed micelles (NTD-PMMs) that can effectively treat IPF by sustaining the release of NTD, and snowballing its bioavailability, solubility, and efficacy. Methods: Design-Expert® software was used to optimize various NTD-PMMs formulations via Box–Behnken design adopting the thin-film hydration technique. The optimum formulation was chosen and in vivo tested in a rat model to explore its comparative bioavailability and toxicity. Results: The formulation composition with 309.217 mg of Soluplus, 150 mg of Tween 80, and 40 mg of sodium deoxycholate was found to fulfill the requisites of an optimum NTD-PMMs formulation. The optimum NTD-PMMs formulation divulged 90.26% entrapment efficiency with a surface charge of −14.72 mV and a nanoscale diameter of 61.36 nm. Also, it substantially sustained the release of NTD by 66.84% after 24 h and manifested a pronounced stability. In vivo histopathology investigations verified the safety of NTD-PMMs delivered intratracheally. Moreover, pharmacokinetic analyses disclosed accentuated relative bioavailability of the optimized NTD-PMMs by 2.4- and 3.82-fold as compared with both the i.t. and oral crude NTD suspensions, respectively. Conclusions: Overall, the current results elicited the potential of PMMs to serve as a promising pulmonary nanovector for the targeted delivery of NTD.

Keywords