ISCC (Indonesian Journal of Cancer Chemoprevention) (Feb 2018)
Antigenotoxic Activity of Rumput Mutiara (Hedyotis corymbosa L.) Ethanolic Extract on Cyclophosphamide-Induced Mice
Abstract
Exposure to relative chemicals has been shown to induce a genotoxic effect that can be observed through formation of micronucleus (MN) in polychromatic erythrocythes (PCE). Rumput Mutiara or Hedyotis corymbosa L. ethanolic extract (HcEE) is known to contain ursolic acid as major compound that possesses antigenotoxic activity on HepG2 cells. This study exerts in vivo approach aiming to evaluate the antigenotoxic effects of HcEE on cyclophosphamide (CP)-induced male Swiss mice. The ursolic acid on HcEE was determined by using thin layer chromatography with silica gel as stationary phase and chloroform-aceton (9:1) as mobile phase. The antigenotoxic activity was carried out by in vivo micronucleus test. Twenty four adult mice were equally divided into seven groups. Group I: control (untreated); group II: Na-CMC 0.5%; group III: CP 50 mg/kg BW; group IV: CP+HcEE 250 mg/kg BW; group V: CP+HcEE 500 mg/kg BW; group VI: CP+HcEE 1000 mg/kg BW; group VII: HcEE 1000 mg/kg BW. HcEE were given for seven days, while CP was administered on the last two days. On the seventh day, the peripheral blood from all mice were collected, smeared, and then stained with Giemsa. The frequencies of MNPCEs and %PCEs were evaluated. Molecular docking was performed to know the interaction between ursolic acid and CYP3A4 by using PLANTS software. There was similar hRF spot between HcEE with ursolic acid standard reference indicated that the extract almost positively contain ursolic acid. HcEE reduced MNPCEs significantly compared to CP group (p<0.05) and combination of CP with HcEE showed reduction of %PCEs (p<0.05). Based on molecular docking analysis, ursolic acid gave lower docking score than CP against CYP3A4 (PDB ID: 2V0M) and similar binding site on amino acid residues Ala 448, Ile 369, Thr 309, and Val 313. All of these data suggest that HcEE perform protective effect against CP-induced genotoxicity. Keywords: Antigenotoxic, Hedyotis corymbosa L., cyclophosphamide, micronucleus, molecular docking