Biomolecules (Apr 2021)

Stabilization of Dry Sucrose Glasses by Four LEA_4 Proteins from <i>Arabidopsis thaliana</i>

  • Dirk K. Hincha,
  • Ellen Zuther,
  • Antoaneta V. Popova

DOI
https://doi.org/10.3390/biom11050615
Journal volume & issue
Vol. 11, no. 5
p. 615

Abstract

Read online

Cells of many organisms and organs can withstand an (almost) total water loss (anhydrobiosis). Sugars play an essential role in desiccation tolerance due to their glass formation ability during dehydration. In addition, intrinsically disordered LEA proteins contribute to cellular survival under such conditions. One possible mechanism of LEA protein function is the stabilization of sugar glasses. However, little is known about the underlying mechanisms. Here we used FTIR spectroscopy to investigate sucrose (Suc) glass stability dried from water or from two buffer components in the presence of four recombinant LEA and globular reference proteins. Buffer ions influenced the strength of the Suc glass in the order Suc g) provided similar information about the H-bonded network. Protein aggregation of LEA proteins was reduced in the desiccation-induced Suc glassy state. Detailed knowledge about the role of LEA proteins in the stabilization of dry sugar glasses yields information about their role in anhydrobiosis. This may open the possibility to use such proteins in biotechnical applications requiring dry storage of biologicals such as proteins, cells or tissues.

Keywords