Water (Oct 2023)

Soil Moisture Distribution and Time Stability of Aerially Sown Shrubland in the Northeastern Margin of Tengger Desert (China)

  • Zhenyu Zhao,
  • Guodong Tang,
  • Jian Wang,
  • Yanping Liu,
  • Yong Gao

DOI
https://doi.org/10.3390/w15203562
Journal volume & issue
Vol. 15, no. 20
p. 3562

Abstract

Read online

Considering the importance of soil moisture in hydrological processes, it is crucial to understand the water distribution and time stability of different aerial shrub soils. There are few studies on the soil moisture of aerial vegetation in the northeastern margin of the Tengger Desert. Based on long-term monitoring data from the aerial seeding area in the northeastern margin of the Tengger Desert, the distribution characteristics of soil moisture and the temporal stability of soil moisture were studied. From June to October 2022, the soil moisture monitoring instrument WatchDog was used to monitor the long-term soil moisture changes (0–200 cm) in the four aerial afforestation plots of Hedysarum scoparium, mixed forest land (Hedysarum scoparium dominant species), mixed forest land (Calligonum mongolicum dominant species), and Calligonum mongolicum. The Spearman rank correlation coefficient was used to study the temporal stability of soil moisture in the four plots. Rainfall data were collected through small weather stations. The results show that the average soil water storage of four kinds of aerial shrub land in the study area was the highest in August, and the average soil water storage of different forest lands was different. The soil water content of the surface layer (0–30 cm) fluctuated the most in different months. The variation in soil water content in the shallow layer (30–100 cm) was smaller than that in the surface layer. The fluctuation of soil water content in the middle layer (100–150 cm) and deep layer (150–200 cm) was relatively stable. There was no strong variability in soil moisture content, and the temporal variation coefficient of surface soil moisture was the highest (31.44–39.8%), which showed moderate variability. The temporal variation coefficient of soil moisture in the shallow, middle and deep layers of all kinds of plots was significantly reduced, and the soil moisture stability of different aerial shrub land was the same. Spearman rank correlation analysis showed that the spatial pattern of soil water content in the surface layer (0–30 cm) and deep layer (150–200 cm) was more stable over time, that is, the temporal stability of soil water content was higher, and the temporal stability of soil water content in the middle and shallow layers of different types of shrub land was different. The research results help us to understand the soil hydrological process in the aerial seeding afforestation area in the northeastern margin of Tengger Desert, rationally arrange soil moisture monitoring points, efficiently manage and utilize water resources in the aerial seeding area, and provide a theoretical basis for local vegetation restoration and the optimization of the ecological environment.

Keywords