Identification of quantitative trait loci underlying five major agronomic traits of soybean in three biparental populations by specific length amplified fragment sequencing (SLAF-seq)
Bo Hu,
Yuqiu Li,
Hongyan Wu,
Hong Zhai,
Kun Xu,
Yi Gao,
Jinlong Zhu,
Yuzhuo Li,
Zhengjun Xia
Affiliations
Bo Hu
Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
Yuqiu Li
Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
Hongyan Wu
Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
Hong Zhai
Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
Kun Xu
Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
Yi Gao
Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
Jinlong Zhu
Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
Yuzhuo Li
Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
Zhengjun Xia
Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
Flowering time, plant height, branch number, node numbers of main stem and pods per plant are important agronomic traits related to photoperiodic sensitivity, plant type and yield of soybean, which are controlled by multiple genes or quantitative trait loci (QTL). The main purpose of this study is to identify new QTL for five major agronomic traits, especially for flowering time. Three biparental populations were developed by crossing cultivars from northern and central China. Specific loci amplified fragment sequencing (SLAF-seq) was used to construct linkage map and QTL mapping was carried out. A total of 10 QTL for flowering time were identified in three populations, some of which were related to E1 and E2 genes or the other reported QTL listed in Soybase. In the Y159 population (Xudou No.9 × Kenfeng No.16), QTL for flowering time on chromosome 4, qFT4_1 and qFT4_2 were new. Compared with the QTL reported in Soybase, 1 QTL for plant height (PH), 3 QTL for branch number (BR), 5 QTL for node numbers of main stem, and 3 QTL for pods per plant were new QTL. Major E genes were frequently detected in different populations indicating that major the E loci had a great effect on flowering time and adaptation of soybean. Therefore, in order to further clone minor genes or QTL, it may be of great significance to carefully select the genotypes of known loci. These results may lay a foundation for fine mapping and clone of QTL/genes related to plant-type, provided a basis for high yield breeding of soybean.