Pharmaceutics (Jul 2022)

A kNGR Peptide-Tethered Lipid–Polymer Hybrid Nanocarrier-Based Synergistic Approach for Effective Tumor Therapy: Development, Characterization, Ex-Vivo, and In-Vivo Assessment

  • Madhu Gupta,
  • Vikas Sharma,
  • Kalicharan Sharma,
  • Anoop Kumar,
  • Ajay Sharma,
  • Imran Kazmi,
  • Fahad A. Al-Abbasi,
  • Sami I. Alzarea,
  • Obaid Afzal,
  • Abdulmalik Saleh Alfawaz Altamimi,
  • Sachin Kumar Singh,
  • Gaurav Gupta,
  • Keshav Raj Paudel,
  • Philip M. Hansbro,
  • Kamal Dua

DOI
https://doi.org/10.3390/pharmaceutics14071401
Journal volume & issue
Vol. 14, no. 7
p. 1401

Abstract

Read online

The present study aims to design, develop and characterize kNGR (Asn-Gly-Arg) peptide-conjugated lipid–polymer-based nanoparticles for the target-specific delivery of anticancer bioactive(s), i.e., Paclitaxel (PTX). The kNGR-PEG-DSPE conjugate was synthesized and characterized by using spectral analysis. The dual-targeted PLGA–lecithin–PEG core-shell nanoparticles (PLNs-kNGR-NPs) were synthesized using a modified nanoprecipitation process, and their physiological properties were determined. The results support that, compared to other NPs, PLNs-kNGR-NPs are highly cytotoxic, owing to higher apoptosis and intracellular uptake. The significance of rational nanoparticle design for synergistic treatment is shown by the higher tumor volume inhibition percentage rate (59.7%), compared to other designed formulations in Balb/c mice in the HT-1080 tumor-induced model. The overall results indicate that the PLNs-kNGR-NPs-based hybrid lipid–polymer nanoparticles present the highest therapeutic efficacy against solid tumor overexpressing the CD13 receptors.

Keywords