Image Analysis and Stereology (Feb 2016)
A ROBUST ESTIMATION TECHNIQUE FOR 3D POINT CLOUD REGISTRATION
Abstract
The 3D modeling pipeline involves registration of partially overlapping 3D scans of an object. The automatic pairwise coarse alignment of partially overlapping 3D images is generally performed using 3D feature matching. The transformation estimation from matched features generally requires robust estimation due to the presence of outliers. RANSAC is a method of choice in problems where model estimation is to be done from data samples containing outliers. The number of RANSAC iterations depends on the number of data points and inliers to the model. Convergence of RANSAC can be very slow in the case of large number of outliers. This paper presents a novel algorithm for the 3D registration task which provides more accurate results in lesser computational time compared to RANSAC. The proposed algorithm is also compared against the existing modifications of RANSAC for 3D pairwise registration. The results indicate that the proposed algorithm tends to obtain the best 3D transformation matrix in lesser time compared to the other algorithms.
Keywords