Biomedicine & Pharmacotherapy (Nov 2022)

Colon cancer therapy with calcium phosphate nanoparticles loading bioactive compounds from Euphorbia lathyris: In vitro and in vivo assay

  • Cristina Mesas,
  • Víctor Garcés,
  • Rosario Martínez,
  • Raúl Ortiz,
  • Kevin Doello,
  • Jose M. Dominguez-Vera,
  • Francisco Bermúdez,
  • Jesús M. Porres,
  • María López-Jurado,
  • Consolación Melguizo,
  • José M. Delgado-López,
  • Jose Prados

Journal volume & issue
Vol. 155
p. 113723

Abstract

Read online

Amorphous calcium phosphate nanoparticles (ACP NPs) exhibit excellent biocompatibility and biodegradability properties. ACP NPs were functionalized with two coumarin compounds (esculetin and euphorbetin) extracted from Euphorbia lathyris seeds (BC-ACP NPs) showing high loading capacity (0.03% and 0.34% (w/w) for esculetin and euphorbetin, respectively) and adsorption efficiency (2.6% and 33.5%, respectively). BC-ACP NPs, no toxic to human blood cells, showed a more selective cytotoxicity against colorectal cancer (CRC) cells (T-84 cells) (IC50, 71.42 µg/ml) compared to non-tumor (CCD18) cells (IC50, 420.77 µg/ml). Both, the inhibition of carbonic anhydrase and autophagic cell death appeared to be involved in their action mechanism. Interestingly, in vivo treatment with BC-ACPs NPs using two different models of CRC induction showed a significant reduction in tumor volume (62%) and a significant decrease in the number and size of polyps. A poor development of tumor vasculature and invasion of normal tissue were also observed. Moreover, treatment increased the bacterial population of Akkermansia by restoring antioxidant systems in the colonic mucosa of mice. These results show a promising pathway to design innovative and more efficient therapies against CRC based on biomimetic calcium phosphate NPs loaded with natural products.

Keywords