Molecules (Feb 2018)
Weed Suppressing Potential and Isolation of Potent Plant Growth Inhibitors from Castanea crenata Sieb. et Zucc
Abstract
This study isolated, determined, and quantified plant growth inhibitors in Japanese chestnut (Castanea crenata Sieb. et Zucc), a deciduous species native to Japan and Korea. In laboratory assays, C. crenata leaves showed strong inhibition on germination and seedling growth of Echinochloa crus-galli (barnyardgrass), Lactuca sativa (lettuce), and Raphanus sativus (radish). Laboratory and greenhouse trials showed that leaves of C. crenata appeared as a promising material to manage weeds, especially the dicot weeds. By GC-MS and HPLC analyses, gallic, protocatechuic, p-hydroxybenzoic, caffeic, ferulic, ellagic, and cinnamic acids were identified and quantified, of which ellagic acid was present in the highest quantity (2.36 mg/g dried leaves). By column chromatography and spectral data (1H- and 13C-NMR, IR, and LC-MS) analysis, a compound identified as 2α,3β,7β,23-tetrahydroxyurs-12-ene-28-oic acid (1) was purified from the methanolic leaf extract of C. crenata (0.93 mg/g dried leaves). This constituent showed potent inhibition on growth of E. crus-galli, a problematic weed in agricultural practice. The inhibition of the compound 1 (IC50 = 2.62 and 0.41 mM) was >5 fold greater than that of p-hydroxybenzoic acid (IC50 = 15.33 and 2.11 mM) on shoot and root growth of E. crus-galli, respectively. Results suggest that the isolated the compound 1 has potential to develop natural herbicides to manage E. crus-galli. This study is the first to isolate and identify 2α,3β,7β,23-tetrahydroxyurs-12-ene-28-oic acid in a plant and report its plant growth inhibitory potential.
Keywords