Immunity & Ageing (Dec 2022)
MicroRNAs: a crossroad that connects obesity to immunity and aging
Abstract
Abstract Obesity is characterized by an elevated amount of fat and energy storage in the adipose tissue (AT) and is believed to be the root cause of many metabolic diseases (MDs). Obesity is associated with low-grade chronic inflammation in AT. Like obesity, chronic inflammation and MDs are prevalent in the elderly. The resident immune microenvironment is not only responsible for maintaining AT homeostasis but also plays a crucial role in stemming obesity and related MDs. Mounting evidence suggests that obesity promotes activation in resident T cells and macrophages. Additionally, inflammatory subsets of T cells and macrophages accumulated into the AT in combination with other immune cells maintain low-grade chronic inflammation. microRNAs (miRs) are small non-coding RNAs and a crucial contributing factor in maintaining immune response and obesity in AT. AT resident T cells, macrophages and adipocytes secrete various miRs and communicate with other cells to create a potential effect in metabolic organ crosstalk. AT resident macrophages and T cells-associated miRs have a prominent role in regulating obesity by targeting several signaling pathways. Further, miRs also emerged as important regulators of cellular senescence and aging. To this end, a clear link between miRs and longevity has been demonstrated that implicates their role in regulating lifespan and the aging process. Hence, AT and circulating miRs can be used as diagnostic and therapeutic tools for obesity and related disorders. In this review, we discuss how miRs function as biomarkers and impact obesity, chronic inflammation, and aging. Graphical Abstract
Keywords