Scientific Reports (Feb 2023)

PAMAM-G4 protect the N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) and maintain its antiproliferative effects on MCF-7

  • Alma Alicia Ortiz-Morales,
  • Juan Benjamín García-Vázquez,
  • Manuel Jonathan Fragoso-Vázquez,
  • Martha Cecilia Rosales-Hernández,
  • Leticia Guadalupe Fragoso-Morales,
  • Alan Rubén Estrada-Pérez,
  • José Correa-Basurto

DOI
https://doi.org/10.1038/s41598-023-30144-7
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Our work group designed and synthesized a promissory compound N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA). The HO-AAVPA is a HDAC1 inhibitor and antiproliferative in cancer cell lines. However, HO-AAVPA is poor water solubility and enzymatically metabolized. In this work, the fourth-generation poly(amidoamine) dendrimer (PAMAM-G4) was used as a drug deliver carrier of HO-AAVPA. Moreover, HO-AAVPA and HO-AAVPA-PAMAM complex were submitted to forced degradation studies (heat, acid, base, oxidation and sunlight). Also, the HO-AAVPA-PAMAM-G4 complex was assayed as antiproliferative in a breast cancer cell line (MCF-7). The HO-AAVPA-PAMAM-G4 complex was obtained by docking and experimentally using three pH conditions: acid (pH = 3.0), neutral (pH = 7.0) and basic (pH = 9.0) showing that PAMAM-G4 captureand protect the HO-AAVPA from forced degradation, it is due to sunlight yielded a by-product from HO-AAVPA. In addition, the PAMAM-G4 favored the HO-AAVPA water solubility under basic and neutral pH conditions with significant difference (F(2,18) = 259.9, p < 0.001) between the slopes of the three conditions being the basic condition which solubilizes the greatest amount of HO-AAVPA. Finally, the HO-AAVPA-PAMAM-G4 complex showed better antiproliferative effects on MCF-7 (IC50 = 75.3 μM) than HO-AAVPA (IC50 = 192 μM). These results evidence that PAMAM-G4 complex improve the biological effects of HO-AAVPA.