Applied Sciences (Dec 2020)
RNA-Peptide Conjugation through an Efficient Covalent Bond Formation
Abstract
Many methods for modification of an oligonucleotide with a peptide have been developed to apply for the therapeutic and diagnostic applications or for the assembly of nanostructure. We have developed a method for the construction of receptor-based fluorescent sensors and catalysts using the ribonucleopeptide (RNP) as a scaffold. Formation of a covalent linkage between the RNA and the peptide subunit of RNP improved its stability, thereby expanding the application of functional RNPs. A representative method was applied for the formation of Schiff base or dihydroxy-morpholino linkage between a dialdehyde group at the 3′-end of sugar-oxidized RNA and a hydrazide group introduced at the C-terminal of a peptide subunit through a flexible peptide linker. In this report, we investigated effects of the solution pH and contribution of the RNA and peptide subunits to the conjugation reaction by using RNA and peptide mutants. The reaction yield reached 90% at a wide range of solution pH with reaction within 3 h. The efficient reaction was mainly supported by the electrostatic interaction between the RNA subunit and the cationic peptide subunit of the RNP scaffold. Formation of the RNP complex was verified to efficiently promote the reaction for construction of the RNA-peptide conjugate.
Keywords