IEEE Photonics Journal (Jan 2022)

Single-Lane 54-Gbit/s PAM-4/8 Signal Transmissions Using 10G-Class Directly Modulated Lasers Enabled by Low-Complexity Nonlinear Digital Equalization

  • Ahmed Galib Reza,
  • Marcos Troncoso-Costas,
  • Colm Browning,
  • Francisco J. Diaz-Otero,
  • Liam P. Barry

DOI
https://doi.org/10.1109/JPHOT.2022.3168683
Journal volume & issue
Vol. 14, no. 3
pp. 1 – 9

Abstract

Read online

This work presents the use of a directly modulated laser (DML) in time- and wavelength division multiplexed passive optical networks (TWDM-PONs), in which an EDFA-based booster amplification and an SOA-based pre-amplification are utilized to improve the optical power budget. We experimentally demonstrate the C-band optically amplified data transmissions and compare the performance of the non-return-to-zero on-off keying (NRZ-OOK), four and eight-level pulse amplitude modulation (PAM-4/PAM-8) using a 10-G class DML. With optical amplification, the uplink and downlink power budgets of about 28 dB and 35 dB, respectively, are achieved for the PAM-4 54-Gbit/s signals at the hard-decision forward error correction (HD-FEC) limit of 3.8x10-3 after transmissions over a 25-km single-mode fiber link. To mitigate waveform distortions caused by the limited bandwidth, nonlinear dynamics, memory effects, and strong laser frequency chirp of the DML, especially during multi-level signal modulations, artificial neural network-based machine learning equalizers and low-complexity Volterra nonlinear equalizers are applied, which operate at the signal baud rate. The bit error ratio performance in conjunction with an enhanced power budget through the use of a low-complexity nonlinear equalizer can justify the validity of using a DML in the next-generation PONs.

Keywords