Microorganisms (Jan 2023)

Carbapenem-Resistant <i>Acinetobacter baumannii</i>: Biofilm-Associated Genes, Biofilm-Eradication Potential of Disinfectants, and Biofilm-Inhibitory Effects of Selenium Nanoparticles

  • Aleksandra Smitran,
  • Bojana Lukovic,
  • LJiljana Bozic,
  • Dijana Jelic,
  • Milos Jovicevic,
  • Jovana Kabic,
  • Dusan Kekic,
  • Jovana Ranin,
  • Natasa Opavski,
  • Ina Gajic

DOI
https://doi.org/10.3390/microorganisms11010171
Journal volume & issue
Vol. 11, no. 1
p. 171

Abstract

Read online

This study aimed to investigate the biofilm-production ability of carbapenem-resistant Acinetobacter baumannii (CRAB), the biofilm-eradication potential of 70% ethanol and 0.5% sodium hypochlorite, the effects of selenium nanoparticles (SeNPs) against planktonic and biofilm-embedded CRAB, and the relationship between biofilm production and bacterial genotypes. A total of 111 CRAB isolates were tested for antimicrobial susceptibility, biofilm formation, presence of the genes encoding carbapenemases, and biofilm-associated virulence factors. The antibiofilm effects of disinfectants and SeNPs against CRAB isolates were also tested. The vast majority of the tested isolates were biofilm producers (91.9%). The bap, ompA, and csuE genes were found in 57%, 70%, and 76% of the CRAB isolates, with the csuE being significantly more common among biofilm producers (78.6%) compared to non-biofilm-producing CRAB (25%). The tested disinfectants showed a better antibiofilm effect on moderate and strong biofilm producers than on weak producers (p 1.25 mg/mL) and biofilm-embedded CRAB, with a minimum biofilm inhibitory concentration of less than 0.15 mg/mL for 90% of biofilm producers. In conclusion, SeNPs might be used as promising therapeutic and medical device coating agents, thus serving as an alternative approach for the prevention of biofilm-related infections.

Keywords