The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (May 2024)

Soybean seedling detection and counting from UAV images based on an improved YOLOv8 Network

  • H. Wu,
  • J. Kang,
  • H. Li

DOI
https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-727-2024
Journal volume & issue
Vol. XLVIII-1-2024
pp. 727 – 735

Abstract

Read online

The utilization of unmanned aerial vehicle (UAV) for soybean seedling detection is an effective way to estimate soybean yield, which plays a crucial role in agricultural planning and decision-making. However, the soybean seedlings objects in the UAV image are small, in clusters, and occluded each other, which makes it very challenging to achieve accurate object detection and counting. To address these issues, we optimize the YOLOv8 model and propose a GAS-YOLOv8 network, aiming to enhance the detection accuracy for the task of soybean seedling detection based on UAV images. Firstly, a global attention mechanism (GAM) is incorporated into the neck module of YOLOv8, which reallocates weights and prioritizes global information to more effectively extract soybean seedling features. Secondly, the CIOU loss function is replaced with the SIOU loss, which includes an angle loss term to guide the regression of bounding boxes. Experimental results show that, on the soybean seedling dataset, the proposed GAS-YOLOv8 model achieves a 1.3% improvement in [email protected] and a 6% enhancement in detection performance in dense seedling areas, when compared to the baseline model YOLOv8s.When compared to other object detection models (YOLOv5, Faster R-CNN, etc.), the GAS-YOLOv8 model similarly achieved the best detection performance. These results demonstrate the effectiveness of the GAS-YOLOv8 in detecting dense soybean seedlings, providing more accurate theoretical support for subsequent yield estimation.