IEEE Access (Jan 2021)
Developing Chaotic Artificial Ecosystem-Based Optimization Algorithm for Combined Economic Emission Dispatch
Abstract
In this paper, Chaotic Artificial Ecosystem-based Optimization Algorithm (CAEO) is proposed and utilized to determine the optimal solution which achieves the economical operation of the electrical power system and reducing the environmental pollution produced by the conventional power generation. Here, the Combined Economic Emission Dispatch (CEED) problem is represented using a max/max Price Penalty Factor (PPF) to confine the system’s nonlinearity. PPF is considered to transform a four-objective problem into a single-objective optimization problem. The proposed modification of AEO raises the effectiveness of the populations to achieve the best fitness solution by well-known 10 chaotic functions and this is valuable in both cases of the single and multi-objective functions. The CAEO algorithm is used for minimizing the economic load dispatch and the three bad gas emissions which are sulfur dioxide (SO2), nitrous oxide (NOx), and carbon dioxide (CO2). To evaluate the proposed CAEO, it is utilized for four different levels of demand in a 6-unit power generation (30-bus test system) and 11-unit power generation (69-bus test system) with a different value of load demand (1000, 1500, 2000, and 2500MW). Statistical analysis is executed to estimate the reliability and stability of the proposed CAEO method. The results obtained by CAEO algorithm are compared with other methods and conventional AEO to prove that the modification is to boost the search strength of conventional AEO. The results display that the CAEO algorithm is superior to the conventional AEO and the others in achieving the best solution to the problem of CEED in terms of efficient results, strength, and computational capability all over study cases. In the second scenario of the bi-objective problem, the Pareto theory is integrated with a CAEO to get a series of Non-Dominated (ND) solutions, and then using the fuzzy approach to determine BCS.
Keywords