PLoS ONE (Jan 2011)

Whole-genome immunoinformatic analysis of F. tularensis: predicted CTL epitopes clustered in hotspots are prone to elicit a T-cell response.

  • Anat Zvi,
  • Shahar Rotem,
  • Erez Bar-Haim,
  • Ofer Cohen,
  • Avigdor Shafferman

DOI
https://doi.org/10.1371/journal.pone.0020050
Journal volume & issue
Vol. 6, no. 5
p. e20050

Abstract

Read online

The cellular arm of the immune response plays a central role in the defense against intracellular pathogens, such as F. tularensis. To date, whole genome immunoinformatic analyses were limited either to relatively small genomes (e.g. viral) or to preselected subsets of proteins in complex pathogens. Here we present, for the first time, an unbiased bacterial global immunoinformatic screen of the 1740 proteins of F. tularensis subs. holarctica (LVS), aiming at identification of immunogenic peptides eliciting a CTL response. The very large number of predicted MHC class I binders (about 100,000, IC(50) of 1000 nM or less) required the design of a strategy for further down selection of CTL candidates. The approach developed focused on mapping clusters rich in overlapping predicted epitopes, and ranking these "hotspot" regions according to the density of putative binding epitopes. Limited by the experimental load, we selected to screen a library of 1240 putative MHC binders derived from 104 top-ranking highly dense clusters. Peptides were tested for their ability to stimulate IFNγ secretion from splenocytes isolated from LVS vaccinated C57BL/6 mice. The majority of the clusters contained one or more CTL responder peptides and altogether 127 novel epitopes were identified, of which 82 are non-redundant. Accordingly, the level of success in identification of positive CTL responders was 17-25 fold higher than that found for a randomly selected library of 500 predicted MHC binders (IC(50) of 500 nM or less). Most proteins (ca. 2/3) harboring the highly dense hotspots are membrane-associated. The approach for enrichment of true positive CTL epitopes described in this study, which allowed for over 50% increase in the dataset of known T-cell epitopes of F. tularensis, could be applied in immunoinformatic analyses of many other complex pathogen genomes.