BMJ Health & Care Informatics (Apr 2024)
Codesigned standardised referral form: simplifying the complexity
Abstract
Background Referring providers are often critiqued for writing poor-quality referrals. This study characterised clinical referral guidelines and forms to understand which data consultant providers require. These data were then used to codesign an evidence-based, high-quality referral form.Methods This study used both observational and quality improvement approaches. Canadian referral guidelines were reviewed and summarised. Referral data fields from 150 randomly selected Ontario referral forms were categorised and counted. The referral guideline summary and referral data were then used by referring providers, consultant providers and administrators to codesign a referral form.Results Referral guidelines recommended 42 types of referral data be included in referrals. Referral data were categorised as patient demographics, provider demographics, reason for referral, clinical information and administrative information. The percentage of referral guidelines recommending inclusion of each type of referral data varied from 8% to 77%. Ontario referral forms requested 264 different types of referral data. Digital referral forms requested more referral data types than paper-based referral forms (55.0±10.6 vs 30.5±8.1; 95% CI p<0.01). A codesigned referral form was created across two sessions with 29 and 21 participants in each.Discussion Referral guidelines lack consistency and specificity, which makes writing high-quality referrals challenging. Digital referral forms tend to request more referral data than paper-based referrals, which creates administrative burdens for referring and consultant providers. We created the first codesigned referral form with referring providers, consultant providers and administrators. We recommend clinical adoption of this form to improve referral quality and minimise administrative burdens.