Computational Study of Photodegradation Process and Conversion Products of the Antidepressant Citalopram in Water
Yifan Shen,
Se Wang,
Ying Lu,
Kai Chen,
Li Luo,
Ce Hao
Affiliations
Yifan Shen
Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Se Wang
Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Ying Lu
Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Kai Chen
Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Li Luo
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
Ce Hao
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Citalopram (CIT) is a commonly prescribed medication for depression. However, the photodegradation mechanism of CIT has not yet been fully analyzed. Therefore, the photodegradation process of CIT in water is studied by density functional theory and time-dependent density functional theory. The calculated results show that during the indirect photodegradation process, the indirect photodegradation of CIT with ·OH occurs via OH-addition and F-substitution. The minimum activation energy of C10 site was 0.4 kcal/mol. All OH-addition and F-substitution reactions are exothermic. The reaction of 1O2 with CIT includes the substitution of 1O2 for F and an addition reaction at the C14 site. The Ea value of this process is 1.7 kcal/mol, which is the lowest activation energy required for the reaction of 1O2 with CIT. C–C/C–N/C–F cleavage is involved in the direct photodegradation process. In the direct photodegradation of CIT, the activation energy of the C7-C16 cleavage reaction was the lowest, which was 12.5 kcal/mol. Analysis of the Ea values found that OH-addition and F-substitution, the substitution of 1O2 for F and addition at the C14 site, as well as the cleavage reactions of C6–F/C7–C16/C17–C18/C18–N/C19–N/C20–N are the main pathways of photodegradation of CIT.