Physical Review X (Jul 2016)

Scalable Quantum Simulation of Molecular Energies

  • P. J. J. O’Malley,
  • R. Babbush,
  • I. D. Kivlichan,
  • J. Romero,
  • J. R. McClean,
  • R. Barends,
  • J. Kelly,
  • P. Roushan,
  • A. Tranter,
  • N. Ding,
  • B. Campbell,
  • Y. Chen,
  • Z. Chen,
  • B. Chiaro,
  • A. Dunsworth,
  • A. G. Fowler,
  • E. Jeffrey,
  • E. Lucero,
  • A. Megrant,
  • J. Y. Mutus,
  • M. Neeley,
  • C. Neill,
  • C. Quintana,
  • D. Sank,
  • A. Vainsencher,
  • J. Wenner,
  • T. C. White,
  • P. V. Coveney,
  • P. J. Love,
  • H. Neven,
  • A. Aspuru-Guzik,
  • J. M. Martinis

DOI
https://doi.org/10.1103/PhysRevX.6.031007
Journal volume & issue
Vol. 6, no. 3
p. 031007

Abstract

Read online Read online

We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient implementation predicts the correct dissociation energy to within chemical accuracy of the numerically exact result. Second, we experimentally demonstrate the canonical quantum algorithm for chemistry, which consists of Trotterization and quantum phase estimation. We compare the experimental performance of these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors. This error tolerance inspires hope that variational quantum simulations of classically intractable molecules may be viable in the near future.