Micromachines (Jan 2022)

Design and Optimization of a Novel MEMS Tuning Fork Gyroscope Microstructure

  • Chuanguo Xiong,
  • Pengjun Zeng,
  • Weishan Lv,
  • Fengming Lu,
  • Ming Zhang,
  • Yuhua Huang,
  • Fulong Zhu

DOI
https://doi.org/10.3390/mi13020172
Journal volume & issue
Vol. 13, no. 2
p. 172

Abstract

Read online

This paper presents the design and optimization of a novel MEMS tuning fork gyroscope microstructure. In order to improve the mechanical sensitivity of the gyroscope, much research has been carried out in areas such as mode matching, improving the quality factor, etc. This paper focuses on the analysis of mode shape, and effectively optimizes the decoupling structure and size of the gyroscope. In terms of structural design, the vibration performance of the proposed structure was compared with other typical structures. It was found that slotting in the middle of the base improved the transmission efficiency of Coriolis vibration, and opening arc slots between the tines reduced the working modal order and frequency. In terms of size optimization, the Taguchi method was used to optimize the relevant feature sizes of the gyroscope. Compared with the initial structure, the transmission efficiency of Coriolis vibration of the optimized gyroscope was improved by about 18%, and the working modal frequency was reduced by about 2.7 kHz. Improvement of these two indicators will further improve the mechanical sensitivity of the gyroscope.

Keywords