Foods (Apr 2024)

Glycated Walnut Meal Peptide–Calcium Chelates: Preparation, Characterization, and Stability

  • Zilin Wang,
  • Ye Zhao,
  • Min Yang,
  • Yuanli Wang,
  • Yue Wang,
  • Chongying Shi,
  • Tianyi Dai,
  • Yifan Wang,
  • Liang Tao,
  • Yang Tian

DOI
https://doi.org/10.3390/foods13071109
Journal volume & issue
Vol. 13, no. 7
p. 1109

Abstract

Read online

Finding stable and bioavailable calcium supplements is crucial for addressing calcium deficiency. In this study, glycated peptide–calcium chelates (WMPHs–COS–Ca) were prepared from walnut meal protein hydrolysates (WMPHs) and chitosan oligosaccharides (COSs) through the Maillard reaction, and the structural properties and stability of the WMPHs–COS–Ca were characterized. The results showed that WMPHs and COSs exhibited high binding affinities, with a glycation degree of 64.82%. After glycation, Asp, Lys, and Arg decreased by 2.07%, 0.46%, and 1.06%, respectively, which indicated that these three amino acids are involved in the Maillard reaction. In addition, compared with the WMPHs, the emulsifying ability and emulsion stability of the WMPHs–COS increased by 10.16 mg2/g and 52.73 min, respectively, suggesting that WMPHs–COS have better processing characteristics. After chelation with calcium ions, the calcium chelation rate of peptides with molecular weights less than 1 kDa was the highest (64.88%), and the optimized preparation conditions were 5:1 w/w for WMPH–COS/CaCl2s, with a temperature of 50 °C, a chelation time of 50 min, and a pH of 7.0. Scanning electron microscopy showed that the “bridging role” of WMPHs-COS changed to a loose structure. UV–vis spectroscopy and Fourier transform infrared spectrometry results indicated that the amino nitrogen atoms, carboxyl oxygen atoms, and carbon oxygen atoms in WMPHs-COS chelated with calcium ions, forming WMPHs-COS-Ca. Moreover, WMPHs-COS-Ca was relatively stable at high temperatures and under acidic and alkaline environmental and digestion conditions in the gastrointestinal tract, indicating that WMPHs–COS–Ca have a greater degree of bioavailability.

Keywords