Xibei Gongye Daxue Xuebao (Oct 2020)

Ground Test and Numerical Simulation on Ground Effect of Ducted Propeller System

  • ,
  • ,
  • ,

DOI
https://doi.org/10.1051/jnwpu/20203851038
Journal volume & issue
Vol. 38, no. 5
pp. 1038 – 1046

Abstract

Read online

The aerodynamic performances of a ducted propeller system applied in a manned vertical takeoff and landing aircraft considering the ground effect are investigated. Based on the ground test and CFD simulation combined with sliding mesh technique, the thrust and power characteristics of the ducted propeller under different heights between the duct and ground are compared and analyzed, and the influence mechanism of the ground effect on the aerodynamic performance of the ducted propeller is detailed analyzed based on the CFD simulation results. The test and simulation results show that, the ground near the ducted propeller leads to a high-pressure zone to block the jet flow through the outlet of the duct, while an upward rebounded flow with the vortex rings is also generated to affect the aerodynamic forces and powers of both the duct and propeller. As the influence of the high-pressure zone, the thrust of the propeller increases. However, the thrust of the duct decreases when the rebounded flow is inhaled again into the duct. With the increase of the heights between the ground and the ducted propeller, the ground effect is weakened, and the power of the system recovers more quickly than the thrust. In general, the ground effect seriously affect the aerodynamic efficiency of the ducted propeller in near ground hover state, which should be mainly considered in the process of aerodynamic and conceptual design.

Keywords