Cell Journal (Sep 2016)

Development of Insulin Resistance through Induction of miRNA-135 in C2C12 Cells

  • Maryam Honardoost,
  • Ehsan Arefian,
  • Masoud Soleimani,
  • Sara Soudi,
  • Mohammad Reza Sarookhani

Journal volume & issue
Vol. 18, no. 3
pp. 353 – 361

Abstract

Read online

Objective: Micro-RNAs (miRNAs) are a class of posttranscriptional regulators that play crucial roles in various biological processes. Emerging evidence suggests a direct link between miRNAs and development of several diseases including type 2 diabetes (T2D). In this study, we aimed to investigate the effect of predicted miRNA and target genes on insulin resistance. Materials and Methods: This experimental study was conducted on the C2C12 cell line. Using bioinformatics tools miRNA-135 and two respective target genes-insulin receptor (Insr) and vesicle associated membrane protein 2 (Vamp2)- were selected as potential factors involved in insulin resistance process. Levels of glucose uptake miRNA expression and respective gene targets were determined after cell transfaction by miR-135. Results: It was determined that Insr gene expression was significantly down-regulated in miR-135 transfected C2C12 cell line (P≤0.05). Interestingly; these transfected cells have shown a significant difference in glucose uptake incomparision the positive control cells, while it was similar to the insulin resistant cell line (P≤0.05). In contrast, no significant alteration of Vamp2 gene expression was observed. Conclusion: Our data indicated no change on the Vamp2 expression level after miRNA transfection, while expression level of Insr was reduced and miR-135 expression was contrarily increased leading to poor stimulation of glucose uptake through insulin, and development of insulin resistance phenotype in C2C12 cell line.

Keywords