Journal of Genetic Engineering and Biotechnology (Mar 2022)
Genome-wide SNP and InDel analysis of three Philippine mango species inferred from whole-genome sequencing
Abstract
Abstract Background The Philippines is among the top 10 major exporters of mango worldwide. However, genomic studies of Philippine mangoes remain largely unexplored and lacking. Here, we sequenced the whole genome of the three Philippine mango species, namely, Mangifera odorata (Huani), Mangifera altissima (Paho), and Mangifera indica “Carabao” variety using Illumina HiSeq 2500, to identify and analyze their genome-wide variants (SNPs and InDels). Results The high confidence variants were identified by successfully mapping 93–95% of the quality-filtered reads to the Alphonso and Tommy Atkins mango reference genomes. Using these two currently available mango genomes, most variants were observed in M. odorata (4,353,063 and 4,277,287), followed by M. altissima (3,392,763 and 3,449,917), and lastly, M. indica Carabao (2,755,267 and 2,852,480). Approximately 50, 46, and 38% of the variants were unique in the three Philippine mango genomes. The analysis of variant effects and functional annotation across the three mango species revealed 56,982 variants with high-impact effects mapped onto 37,746 genes, of which 25% were found to be novel. The affected mango genes include those with potential economic importance such as 6945 genes for defense/resistance/immune response, 323 genes for fruit development, and 338 genes for anthocyanin production. Conclusions To date, this is the first sequencing effort to comprehensively analyze genome-wide variants essential for the development of genome-wide markers specific to these mango species native to the Philippines. This study provides an important genomic resource that can be used for the genetic improvement of mangoes.
Keywords