Cellular Physiology and Biochemistry (Sep 2015)

SGK1-Sensitive Regulation of Cyclin-Dependent Kinase Inhibitor 1B (p27) in Cardiomyocyte Hypertrophy

  • Jakob Voelkl,
  • Tatsiana Castor,
  • Katharina Musculus,
  • Robert Viereck,
  • Sobuj Mia,
  • Martina Feger,
  • Ioana Alesutan,
  • Florian Lang

DOI
https://doi.org/10.1159/000430380
Journal volume & issue
Vol. 37, no. 2
pp. 603 – 614

Abstract

Read online

Background/Aims: The serum- and glucocorticoid-inducible kinase SGK1 participates in the orchestration of cardiac hypertrophy and remodeling. Signaling linking SGK1 activity to cardiac remodeling is, however, incompletely understood. SGK1 phosphorylation targets include cyclin-dependent kinase inhibitor 1B (p27), a protein which suppresses cardiac hypertrophy. The present study explored how effects of SGK1 on nuclear p27 localization might modulate the hypertrophic response in cardiomyocytes. Methods: Experiments were performed in HL-1 cardiomyocytes and in SGK1-deficient (sgk1-/-) and corresponding wild-type (sgk1+/+) mice following pressure overload by transverse aortic constriction (TAC). Transcript levels were quantified by RT-PCR, protein abundance by Western blotting and protein localization by confocal microscopy. Results: In HL-1 cardiomyocytes, overexpression of constitutively active SGK1 (SGK1S422D) but not of inactive SGK1 (SGK1K127N) increased significantly the cell size and transcript levels encoding Acta1, a molecular marker of hypertrophy. Those effects were paralleled by almost complete relocation of p27 in the cytoplasm. Treatment of HL-1 cardiomyocytes with isoproterenol was followed by up-regulation of SGK1 expression. Moreover, isoproterenol treatment stimulated the hypertrophic response and was followed by disappearance of p27 from the nuclei, effects prevented by the SGK1 inhibitor EMD638683. The effect of SGK1S422D overexpression on Acta1 mRNA levels was disrupted by overexpression of p27 and of the p27T197A mutant lacking the SGK1 phosphorylation site, but not of the phosphomimetic p27T197D mutant. In sgk1+/+ mice, TAC increased significantly SGK1 and Acta1 mRNA levels and decreased the nuclear to cytoplasmic protein ratio of p27 in cardiac tissue, effects blunted in the sgk1-/- mice. Conclusion: SGK1-induced hypertrophy of cardiomyocytes involves p27 phosphorylation at T197, which fosters cytoplasmic p27 localization.

Keywords