BMC Pregnancy and Childbirth (Jan 2024)
Changes in the shape and function of the fetal heart of pre- and gestational diabetes mothers
Abstract
Abstract Background Hyperglycemia during pregnancy can affect fetal heart in many ways, including causing cardiac malformation, leading to hypertrophic cardiomyopathy and cardiac dysfunction. Echocardiographic evaluation can assist identify alterations in heart structure, morphology and function, enabling prompt monitoring and management. However, according to earlier research, the cardiac alterations are modest in hyperglycemic mothers’ fetuses, and might not be detectable using conventional methods and it is also unclear whether these changes are related to the metabolism of mothers. Fetal Heart Quantification (Fetal HQ) can assess ventricular geometry and function more sensitively and thoroughly, and identify sub-clinical cardiac dysfunction. The purpose of this study was to evaluate fetal heart by Fetal HQ in fetuses of hyperglycemic mothers who either had pre-gestational or gestational diabetes and to correlate them with maternal metabolic indices. Methods The fetuses of 25 gestational age-matched control mothers, 48 women with gestational diabetes mellitus (GDM), and 11 women with diabetes mellitus (DM) were included in the prospective case-control research. Using fetal echocardiography and speckle tracking echocardiography (STE), the heart of the fetus was evaluated. Differences in the groups’ anthropometric, metabolic, and cardiac parameters were examined. It was assessed whether maternal features, prenatal glucose, lipids, and maternal hemoglobin A1c (HbA1c) correlated with fetal cardiac parameters. Results The LV EDV and ESV were significantly higher in the GDM group as compared to the DM group (p < 0.05). The GSI% was significantly lower in the GDM group compared with the control (p < 0.05). The LV SV and CO of the GDM group were both significantly higher compared with the DM group (p < 0.05). There was a significant decrease in RV FS for segments 1–7 in GDM fetuses compared to the control (p < 0.05) and for segments 5–10 compared to DM (p < 0.05). Fetal cardiac morphology and function indices correlate with maternal pregestational weight, BMI, early pregnancy fast glucose, lipids, and glycemic control levels. Conclusions Fetuses exposed to gestational diabetes have altered heart morphology and function that is linked to maternal metabolic parameters, which presents a special indication for performing geometry and function cardiac assessment. Fetal HQ can be employed to evaluate the fetal cardiac shape and function in fetuses exposed to gestational diabetes.
Keywords